
The Bakery++ Algorithm

The Bakery algorithm is the first true solution of mutual exclusion, but it suffers from register overflows.

Bakery++ is a slightly modified version of Bakery that avoids overflows without introducing new

variables or redefining the operations or functions of Bakery.

Bakery++ is quite simple.

Bakery++ is specified formally in the PlusCal language and verified correct using the TLC model checker.

Avoiding Register Overflow in the Bakery Algorithm

Amirhossein Sayyadabdi and Mohsen Sharifi SRMPDS ‘20, Edmonton, AB, Canada

Communication-aware Job Scheduling using SLURM
Priya Mishra, Tushar Agrawal, Preeti Malakar

Indian Institute of Technology Kanpur
MOTIVATION
Performance of communication-intensive jobs
affected by network contention, node-spread and
job interference

OBJECTIVE
Developing node-allocation algorithms that
consider the job’s behaviour during resource
allocation to improve the performance of
communication-intensive jobs

METHODS
• Greedy Allocation: Nodes

allocated on switches with
lower communication ratio
(lower contention and higher
free nodes)

• Balanced Allocation: Nodes
allocated in powers-of-two to
minimize inter-switch
communication

• Adaptive Allocation: Selects
the more optimal node-
allocation algorithm (greedy or
balanced) based on their cost
of communication

RESULTS
• Proposed algorithms reduce the

execution times by 9% on average
and the wait times by 31% across
three job logs

• Balanced and adaptive always
perform better than default and
greedy

• Proposed algorithms always
perform better than the default for
the same cluster state (individual
runs)

Characterizing the Cost-Accuracy Performance of Cloud Applications
Sunimal Rathnayake, *Lavanya Ramapantulu, Yong Meng Teo

National University of Singapore, *Nanyang Technological University

SRMPDS Workshop @ ICPP 2020

cloud resources

‒ scalable
‒ resource pool
‒ pay for use

charging

‒ results of
different accuracy

‒ resource demand
varies with
accuracy

‒ e.g. machine
learning

some cloud applications

• Measurement-driven model and analysis

• Cost-accuracy “sweet spots”

• Cost-accuracy and time-accuracy Pareto
optimal configurations

• Metrics for cost-accuracy and time-accuracy
performance

two stage approach
- measurements for characterization
- model and optimization for determining cost, time and
configuration

Approach

Motivation

Contribution

Opportunity for
Trading-off

Accuracy for Time
and Cost

Scheduling Task-parallel Applications in Dynamically Asymmetric Environments
Jing Chen, Pirah Noor Soomro, Mustafa Abduljabbar, Madhavan Manivannan, Miquel Pericàs

0

500

1000

1500

2000

2500

3000

3500

2 3 4 5 6

Th
ro

ug
hp

ut
 [T

as
ks

/s
]

DAG Parallelism

RWS RWSM-C FA FAM-C DA DAM-C DAM-P

0

100

200

300

400

500

600

700

800

900

2 3 4 5 6

Th
ro

ug
hp

ut
 [T

as
ks

/s
]

DAG Parallelism

RWS RWSM-C FA FAM-C DA DAM-C DAM-P

Interference: co-running application

Interference: DVFS

Motivations Method

Performance Trace Table (PTT)

Results

uGoal: Performance prediction for future

tasks given a set of resources;

uEntries: elastic execution place (leader core,

resource width);

uOne PTT for each task type;

uDynamic update of execution time records

during execution;

uAwareness of interference activities;

uOnly require few information;

uPTT is independent of platforms;

uLow overhead.

SRMPDS 2020

u Applications sharing resources suffer
from interference.

u Runtime scheduling techniques
coupled with application knowledge
can be used to mitigate interference.

u An online performance model is used
to predict task performance.

u We leverage task moldability and

knowledge of task criticality to adapt
to interference.

u Our scheduler targets to minimize
resource usage, execution time and
overcommitting of resources.

Network and Load-Aware Resource Manager for MPI Programs
Ashish Kumar, Naman Jain, Preeti Malakar

Department of Computer Science and Engineering, Indian Institute of Technology, Kanpur

Problem
Node allocation in a shared cluster for parallel jobs to max-
imize performance considering both compute and network
load on the cluster.

Challenges

(a) N/W bandwidth (b) CPU load
Figure: Variation across nodes

•Non exclusive access to nodes in shared cluster
•Variation in load/utilization across time/nodes
•Topology does not capture the current state of network
•Contention and congestion in the network due to
existing jobs
•Varying computation and communication requirements
of different programs

Core Components
Resource Monitor
−Distributed monitoring system for cluster
−Uses light-weight daemons for periodically updating
livehosts, node statistics and network status

Allocator
−Allocates nodes based on user request
−Considers node attributes and network dynamics
−Uses data collected by resource monitor

Figure: Allocator workflow

Problem Formulation

Model: Represent cluster as graph with vertices as compute nodes and edges as network links
Objective: Find a sub-graph satisfying user demands such that the overall load of sub-graph
is minimized

Compute Load
−Measure of overall load on the node
−Static (core count, clock speed) & dynamic
(CPU load, available memory) attributes
−CLv =

∑
a∈attributeswa ∗ valva

Network Load
−Measure of load on the P2P network link
−Considers bandwidth and latency
−Topology automatically gets captured
−NL(u,v) = wltLT(u,v) + wbwBW(u,v)

Algorithm

−Find candidate sub-graphs
−Calculate total load for each sub-graph

Compute Load, CGv
= ∑

u∈Vv CLu
Network Load, NGv

= ∑
(x,y)∈EvNL(x,y)

Total Load = α× CGv
+ β ×NGv

−Pick the best one according to total load

2.2 4.1 1.8 3.7︸ ︷︷ ︸

Pictorial representation of allocation algorithm

Candidate Selection Algorithm
−Start with a particular node v
−Calculate addition load for all nodes w.r.t. start node

Av(u) = α× CL(u) + β ×NL(v, u)
−Keep adding nodes in increasing order of addition load to sub-graph until request is satisfied

Results

Algorithm Avg. gain Max. gain
Random 49.9% 87.8%

Sequential 43.1% 84.5%
Load Aware 32.4% 87.7%

Table: Performance gain using our allocation method
Observations

−Our algorithm performs better than random,
sequential, and load-aware on an average.
−Load-aware performed better than sequential for less

number of nodes whereas worse for a large number of
nodes.

Conclusions and Future Work
−Our algorithm reduces run-times by more than 38% over
random, sequential and load-aware allocations.
−Formalization of weights estimation
−Extension to large scale systems, spanning over multiple
clusters.

Developing Checkpointing and Recovery Procedures with the Storage Services
of Amazon Web Services

Luan Teylo1, Rafaela C. Brum1, Luciana Arantes2, Pierre Sens2 & Lúcia M. A. Drummond1

Federal Fluminense University - IC/UFF1, Sorbonne Université - LIP62

Motivation

Clouds, usually, offer VMs in different markets,
with different guarantees in terms of availability and
prices

-On-demand VMs:
•High availability
•Cannot be interrupted by the provider

-Spot VMs:
•Offer up to 90% discount compared with on-demand
prices

• Low availability
• Interrupted by the provider when it needs the resources
back

As the VMs in the spot market are subject to
revocation by the provider, the adoption of check-
point/recovery techniques are essential to minimize
possible job losses

When using a checkpoint, it is essential to ensure
that, in the event of an interruption, the files re-
quired for the task recovery are available. In the
case of cloud environments, different storage options
can be hired and used along with the VMs.

This work proposes and evaluates checkpoint and re-
covery procedures by adopting the following storage
services:

•Amazon Simple Storage Service (S3), an object
storage service that offers scalability, security and
performance;

•Amazon Elastic Block Store (EBS), a block
storage service designed for EC2 VMs and
workloads with high throughput;

•Amazon Elastic File System (EFS), a simple and
scalable elastic NFS file system.

Contributions

The checkpoint/recovery procedures were in-
cluded into a previously proposed framework,
called HADS (Hibernation Aware Dynamic
Scheduling), for scheduling bag-of-tasks (BoT)
applications onto the spot and on-demand VMs,
aiming at minimizing monetary costs and re-
specting a given deadline.
The main contributions of this paper are the fol-
lowing:
•Extension of HADS with new checkpoint and
recovery procedures;

•Evaluation of the scalability and impact of the
proposed strategies in terms of execution and
monetary costs, in different storage services.

Results

Dump time without concurrence
The dump time with S3 presented an increment of
72.57% and 89.37% on average when compared
to EFS and EBS, respectively
EBS presented the best results, with dump time
varying from 0.65 to 55.82 seconds, followed by EFS
(2.12 to 78.73 seconds)

task's memory footprint (MB)

av
er

ag
e

du
m

p
tim

e
(s

ec
on

ds
)

0.00

50.00

100.00

150.00

200.00

250.00

1,000.00 2,000.00 3,000.00 4,000.00 5,000.00 6,000.00 7,000.00

S3 EFS EBS

Dump time with concurrence
Task with the biggest memory footprint (7,750 MB)
was executed considering scenarios where one, two,
four, and six VMs shared the same file system. To
avoid concurrency with other resources, we consid-
ered only one task per VM
The average dump time with S3 was 65.92% greater
than EFS with one VM. That difference drops to
46.31% with two VMs. at the four VMs scenario,
the time already becomes bigger in EFS then S3
(3.03% of increment)
In the six VMs scenario, the dump time with concur-
rent checkpoint recording increased 37.89% with
EFS in comparison to S3.

Number of VMs

D
um

p
Ti

m
e

(s
ec

on
ds

)

0

120

240

360

480

1 2 4 6

S3 EFS

Recovery Procedure Evaluation
The time of EBS is 9.14% higher than S3 and
25.86% higher than EFS

Storage Services

Ti
m

e
D

ur
at

io
n

(S
ec

on
ds

)

160

180

200

220

240

S3 EFS EBS

Monetary Cost for Long-Running Tasks
We considered an application with only one task ex-
ecuting for 30 days without any interruption or re-
vocation. We assumed that 30 GBs of data were
kept in the storage service, including the checkpoint
files, along those days.
While the user pays US$0.69 for the 30 GBs stored
for 30 days in S3, in EBS and EFS those costs are
US$3.0 and US$9.01, respectively

Storage Services

M
on

et
ar

y
C

os
t (

U
S

 $
)

$0.00

$10.00

$20.00

$30.00

$40.00

S3 EBS EFS

Storage service VM

Conclusion & Future Work

S3 proved to be the best option in terms of mon-
etary cost but required a longer time for recording
a checkpoint, individually. However, when concur-
rent checkpoints were analyzed, which can occur in
a real application with lots of tasks, in our tests, S3
outperformed EFS in terms of execution time also
Next Steps:
•We intend to evaluate other checkpoint
approaches, including the two-step asynchronous
recording

•The impact of the used checkpoint interval on the
monetary cost and execution time

Contact Information
•Lab: cloud.ic.uff.br
• luanteylo@id.uff.br

http://cloud.ic.uff.br

	Avoiding Register Overflow in the Bakery Algorithm
	Communication-aware_Job_Scheduling_using_SLURM_pitch_presentation
	Characterizing-the-Cost-Accuracy-Performance-of-Cloud-Applications
	Characterizing the Cost-Accuracy Performance of Cloud Applications

	SchedulingTask-parallelApplicationsinDynamicallyAsymmetricEnvironments
	Network and Load-Aware Resource Manager for MPI Programs
	Developing Checkpointing and Recovery Procedures with the Storage Services of Amazon Web Services

